
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

An Advanced Visualisation Engine with Role-Based

Access Control for Building Energy Visual Analytics

Georgios Kormpakis
Decision Support Systems

Laboratory, School of Electrical
and Computer Engineering

National Technical University of
Athens

Athens, Greece
gkorbakis@epu.ntua.gr

Panagiotis Kapsalis

Decision Support Systems
Laboratory, School of Electrical

and Computer Engineering

National Technical University of
Athens

Athens, Greece
pkapsalis@epu.ntua.gr

Konstantinos Alexakis

Decision Support Systems
Laboratory, School of Electrical

and Computer Engineering

National Technical University of
Athens

Athens, Greece
kalexakis@epu.ntua.gr

Sotiris Pelekis

Decision Support Systems
Laboratory, School of Electrical

and Computer Engineering

National Technical University of
Athens

Athens, Greece
spelekis@epu.ntua.gr

Evangelos Karakolis
Decision Support Systems

Laboratory, School of Electrical
and Computer Engineering

National Technical University of

Athens
Athens, Greece

vkarakolis@epu.ntua.gr

Haris Doukas
Decision Support Systems

Laboratory, School of Electrical
and Computer Engineering

National Technical University of

Athens
Athens, Greece

h_doukas@epu.ntua.gr

Abstract — One of the main challenges of today’s societies is

the avoidance of the climate change since the climate crisis in now

more evident than ever. Buildings have a large share of total

energy consumption and, thus, it is obvious that actions should be

taken to reduce their needs. Taking into consideration that

nowadays data related to building’s metrics are available in

significantly higher rate than in the past, due to the advance of the

related technologies, it is necessary to find ways to exploit them in

order to draw useful inferences regarding their consumptions and

how they can be reduced. For that reason, in this paper we present

a Visualisation Engine, which offers a variety of visualisations over

stored data. With the usage of the proposed Visualisation Engine,

we envision to be able to conduct sufficient research over the data,

to generate insightful information regarding their behaviour, and

to assist the development of useful solutions towards the direction

of more energy efficient buildings.

Keywords — building data, energy efficiency, visualisations,

visual analytics

I. INTRODUCTION

A. Background

Nowadays, the technologies related to the Internet of Things

devices, such as smart meters and various sensors, are

constantly advancing and being enriched, resulting in massive

amounts of produced data [1]. At the same time, current climate

change threats undoubtedly represent a domain where action is

required [2] and the European Union (EU) is called to provide

efficient solutions for this serious problem since Energy

Efficiency has become an undoubted necessity worldwide. As

almost 40% of EU energy consumption is produced from

buildings [3], the building sector must adapt to the current

situation and contribute to the identification and
implementation of effective measures that will lead to a

decarbonized future and to the achievement of the objectives

set out in the Paris Agreement [4], since reducing energy
consumption is one of the current major global challenges [5].

In order to increase energy efficiency, we must standardise the

data collection, data processing and visualisation techniques

[6]. As a result, suitable ground for research activity is currently

offered.

As the digitalisation era is more apparent than ever, data

availability and quality have significantly improved [7].

However, more challenges also emerge[8], since the data are

now generated in an unprecedented rate assisted by cutting-

edge technology. Recently, great attention has been paid to the

challenges for great data, largely due to the wide spread of
applications and systems used in real life, such as presentation,

modelling processing and large (often unlimited) data storage.

Data management has grown in importance, since

extracting the significant value out of a huge pile of raw data is

of prime importance, in order to make different decisions[9].

All these massive amounts of data have to be exploited [10],

leading to valuable conclusions, detailed insights and decision

support for the adoption of more efficient measures and policies

towards maximum energy efficiency, minimum operating costs

and, thus, reduced environmental impact [11].

The overarching driving vision of visual analytics is to turn

the information overload into opportunities [12]. Τo exploit
data towards this vision, there is a necessity of being able to

represent them in a well-defined, easily readable, and adjustable

way. In this direction, there is a variety of tools that assist the

visualisation of data while various analytical visual tools are

increasingly being developed for scientific communities [13]

serving data analysis tasks.

B. State-of-the-art

One of the most widely used is the Apache Superset1. It is a

modern, enterprise-ready business intelligence (BI) web

application which offers a simple and feature-rich interface that

allows the users to create and share dashboards. It also allows

users to focus on each graph/metric as well as to filter and

organise the needed data.

Tableau 2 is also widely used. Tableau is a free data

visualisation software, which supports various concepts and

commands to create charts, assemble them into dashboards and

extract insights and patterns existing in the available data [14].

Another commonly used approach for data visualisations is

the Matplotlib3 library, which is a comprehensive library for

creating static, animated and interactive visualisations in

Python. It offers the capability of creating various plots,

interactive figures that can zoom, pan, and update, customisable

layouts, the capability of exporting in various file formats and

it can be embedded in JupyterLab and Graphical User

Interfaces. It runs on all major operating systems, with binaries

for Macintosh’s OS X, Microsoft Windows, and the major

Linux distributions [15].

All the above-mentioned tools are widely user for a variety
of visualisations, including building data visualisations. Some

further tools that are commonly used are Qlik4, Datawrapper5

and Plotly6.

C. Contribution

In the present paper we propose a Visualisation Engine,
implemented in the context of the MATRYCS7 H2020 project,
which visualises data in a variety of ways aiming to assist the
extraction of useful conclusions and insights. These data derive
from the project’s large-scale pilots and include a wide variety
of data that contain information about building energy, heating
consumption, CO2 emissions, cooling demands, and Energy
Performance Certificate (EPC) information.

Our proposed Visualisation Engine is, in essence, a
dashboard that communicates with the database of the stored
data and, via a user-friendly and adjustable interface, provides
the capability of visualising the requested data in a variety of
commonly used charts (pie charts, bar charts, gauge charts, line
charts, radar charts), as well as map and plain table
visualisations. Since the building data of the project are
sensitive, a security mechanism was developed in the context of
the project. Specifically, due to the fact that a number of pilots
were involved in the project, it was necessary to assure that each
potential user would only be able to only access the data of their
organisation and, of course, that no unauthorised users would be
able to access any data. In this respect, the aforementioned
security mechanism was designed properly in order to achieve

1 https://superset.apache.org/
2 https://www.tableau.com/
3 https://matplotlib.org/
4 https://www.qlik.com/us/
5 https://www.datawrapper.de/

role-based access control which was, in our case, the needed
approach for efficiently securing the data.

Thus, apart from a comprehensive way of visualising the
available data, which includes, as mentioned, a variety of charts
as well as maps and tables, the proposed Visualisation Engine
also offers a significant merit which is no other than the role-
based access management. In this way, motley datasets are
efficiently secured, and a variety of capabilities are offered,
since any connected database can simultaneously have various
datasets that, through proper handling, can be restricted to non-
authorised users.

D. Structure of the Document

The rest of the paper is organised as follows: in Section II
we analyse the architecture of the Visualisation Engine and the
technologies and libraries that have been leveraged during its
development. In Section III we present the outcomes of this
Visualisation Engine, and we thoroughly describe the different
pages that it includes, among with some representative
screenshots that demonstrate the work conducted, as well as the
security mechanism with which it is integrated. In Section IV we
demonstrate a use case scenario of the Visualisation Engine and,
finally, in Section V we describe the conclusions that derive
from this implementation, and we discuss regarding some
possible extensions and future work that can be implemented.

II. ARCHITECTURE

The visualization of the available building data is of utter
importance towards the effort to maximize energy efficiency via
methodical and systematic monitoring and reporting. Building
data are either timeseries data or metadata that describe their
characteristics. There is a number of different architectures that
describe the management of these data with either property
databases [16] or hybrid ways that can manage timeseries data
[17]. The proposed architecture is focused on visual analytics for
building data. The high-level view of this architecture is
presented in Fig. 1.

A. Libraries and Tools Used

The application was developed using powerful and modern
tools and libraries in order to ensure a quality and robust
implementation.

The Visualization Engine comprises a dashboard, which is a
Single Page Application (SPA) developed using the React 8
framework. SPAs are a state-of-the-art approach to web
development and offer significant advantages compared to
Multi-Page Applications. Specifically, SPAs are faster than
Multi-Page Applications since most of the resources (HTML9 /
CSS10 / Scripts) are only loaded once throughout the lifespan of
an application and from that point on they do not update the
entire page but only the required content. Also, SPAs offer more

6 https://plotly.com/
7 https://matrycs.eu/
8 https://reactjs.org/
9 https://en.wikipedia.org/wiki/HTML
10 https://www.w3.org/Style/CSS/Overview.en.html

efficient caching, easier debugging and, in general, a better user
experience.

Fig. 1: High-level architecture of the proposed Visualisation Engine.

The dashboard has been designed and implemented according to
latest instructions for an optimal user experience, meaning that
it is simple, legible, and fully responsive, with an interface that
adjusts perfectly in both desktop and mobile devices

The CSS framework used for the creation of the dashboard
is the Material-UI library11, one of most popular libraries used
with React. It has been created by Google12 and can be used as
a single resource for all the styling needs, since it provides
components, styles, themes, and icons.

The visualizations are developed using amCharts13, which is
a library for data visualization that includes a variety of basic
and advanced charts, as well as various extendable plugins and
other functionalities.

B. Functionalities Implemented and Execution Steps

When using the dashboard, the user can choose between a
variety of visualizations, which are displayed in a sidebar menu
that appears on the left side of the screen. The users can also
visualize the needed data into tables, by filling a meticulously
designed HTML form. The form supports common SQL 14
commands (ORDER BY, LIMIT, DESC/ASC).

Other than forms, the user can also directly execute SQL
queries to the database by writing plain SQL queries in a textbox
that the platform offers. After submitting a valid query, the
requested data are fetched and are displayed in fully responsive
tables, offering a clean and legible view of the data.

The procedure executed upon the submission of a request is
as follows. After submitting a valid form, the front-end
application connects to the backend and, using the Axios 15
library, it sends a REST API call which includes the form’s data
as payload, in JSON 16 format. The backend retrieves the
requested data from the database and proceeds with properly
formatting them. Following, the back-end sends the properly
formatted data to the front-end application, again in JSON
format. Finally, the requested data are available to the front-end

11 https://mui.com/
12 https://www.google.com/
13 https://www.amcharts.com/docs/v4/
14 https://en.wikipedia.org/wiki/SQL
15 https://axios-http.com/docs/intro

application, where they are processed and injected into the -
requested by the user- visualization chart.

The mechanism responsible for sending the data to the
Visualisation Engine is the Data Feed Module. It is the cloud
pipeline responsible for receiving data from Building
information systems, conducts aggregations and, via its
collections of REST APIs, distributes the information to the
application layer. The component enables Pandas17 SQL18, and
Presto19 for combining information from different sources.

Fig. 2: LSP data table representation.

The data deriving from each pilot contain dissimilar
information, thus fields, which can lead to different results and
outcomes. For clarity reasons, Fig. 2 depicts the content from
one of the project’s large-scale pilots’ tables. As shown, this
LSP’s table contains information regarding the project’s
number, the project’s stored activity, the type of the activity
accomplished, the type of the building in which the
refurbishment, the CO2 emission and energy consumed
reduction that was achieved, the CO2 emission factor and the
CO2 emission reduction and energy consumed scaled values, as
well as the CO2 emission factor scaled values. Below, the plain
SQL command sent to the back-end will be displayed, as well as
the returned data, with a limit of eight rows. The SQL command
sent is the following:

The data related to the projects’ numbers have been hidden
for confidentiality reasons.

C. Security Considerations and Integration

An aspect of the Visualisation Engine that had to be
considered is the security of the application. It is of utter
importance to ensure that the data, that are sensitive and private,
would be secured and that non-authorized users could not have
access to them. In order to fulfil this requirement, another
component, named Security Enabler, was implemented. The
purpose was to enable role-based access control, with the vision
to totally exclude non-authorised users from the entirety of the

16 https://www.json.org/json-en.html
17 https://pandas.pydata.org/
18 https://en.wikipedia.org/wiki/SQL
19 https://prestodb.io/

SELECT * FROM lsp_name_table LIMIT 4

Visualisation Engine’s content and to restrict specific users’
access to specific datasets, based on the project’s pilot they are
involved in. For this reason, we initially leveraged KeyCloak’s20
functionalities. KeyCloak is an open-source management
system. It provides user federation, strong authentication, user
management, fine-grained authorisation and several further
functionalities which facilitate the work of the developers by
providing well-implemented authentication ant authorisation
mechanisms. Its functionality is based on OAuth221 & UMA 2
security protocols [18]. OAuth2 is a modern authorization
framework that enables applications to obtain limited access on
an HTTP service22. User-Managed Access (UMA 2 or UMA
2.0) is a standard that aims to strengthen data privacy based on
the well-known privacy by design principles 23. Technically,
UMA 2 is a party-to-party authorization protocol based on the
OAuth2 authorization framework.

On top of KeyCloak, we developed a new component,
named Security Enabler. Security Enabler builds up on
KeyCloak’s functionalities and exposes a new REST API which
provides all the above-described functionalities and some
further extensions, hence ensuring that users cannot access
KeyCloak, which is the basic user management tool. By using
this component, we managed to create various roles for the
Visualisation Engine with the vision to apply role-based access
control and grant access to specific datasets only to the users that
should have access to them.

Specifically, three processes, which are not serial, are
required for the user to be authenticated and granted with access.
The first process is the Sign In process, which is realised with a
REST API call that includes the username and the password, as
shown in Table I.

TABLE I: JSON INPUT FOR USER SIGN-IN AND ACCESS TOKEN ACQUISITION

POST /user/get/token

{

 "username": "userUsername",

 "password": "userPassword"

 }

If the credentials are correct, the backend responds with a JSON
object that includes the access token and some additional fields.

The front-end application stores the access token and the
username in order to adjust its content based on them. By using
one of the available REST API calls, as shown in Table II, in
which the username is required, the roles of this specific user
can be retrieved. The request sent is shown in Table II and the
response of the REST API is shown in Table III. These roles are
also stored in the front-end application and the available datasets

20 https://www.keycloak.org/
21 https://oauth.net/2/
22 https://www.digitalocean.com/community/tutorials/an-

introduction-to-oauth-2

are filtered in order to only display to the users the datasets of
their organisation.

TABLE II: GET REQUEST TO ACQUIRE USER'S ROLES

GET /user/userUsername/client/clientName/roles

TABLE III: REST API RESPONSE AFTER USER’S ROLES REQUEST

{

 "message": "User roles for client VisualizationEngine:",

 "roles": [

 "testRole1 ",

 "testRole2",

]

}

The third process, which takes place on each page’s load, is
the introspection of the stored access token. A REST API call
has been implemented, in which the token is sent to the back-
end for introspection. The payload sent to the REST API is
displayed in Table IV. The introspection’s reply contains
information about the validity of the provided access token as
well as the related user’s information. In this way, since this
procedure takes place before each page’s rendering, it is ensured
that no unauthorised or signed-out user can access the specific
page. The same happens for a user with an expired access token.
In the above-mentioned cases, the users are automatically
navigated to the Sign In page, in order to provide again their
credentials and acquire a new access token.

TABLE IV: JSON INPUT FOR THE INTROSPECTION OF THE ACCESS TOKEN

POST /token/introspection

{“access_token": "acquiredAccessToken"}

III. RESULTS

The outcome of the above-mentioned considerations and
architecture description was a software application aimed for
advanced analytics and named Visualisation Engine.

The ability of visualising data deriving from large scale
pilots is becoming increasingly needed, taking into
consideration that nowadays data are generated in a vast rate and
must be exploited in order to lead to important insights that will

23 https://wso2.com/articles/2019/3/user-managed-access-in-

action-part-one/

help towards the big challenge of our days; meeting the
standards to avoid climate change.

The Visualisation Engine proposed in the present paper is
implemented to offer to the users the capability of visualising
the requested data in various formats including a variety of
common visualisation charts (e.g., pie charts, bar charts, gauge
charts, radar charts and line charts), as well as the possibility of
rendering interactive maps if the data include geospatial
information, such as coordinates. Simple tables are also
available for the data representation, along with smart query
possibilities, in order to maximise the potential exploitation of
the available data.

One of the main offerings of the proposed Visualisation
Engine is its integration with the security mechanism, which is
another component we developed for the security aspect of our
implementation. During the course of this project, we followed
a microservice-oriented implementation workflow which
resulted in these two components. The main outcome of the
integration of these two components was the fact that, unlike
other visualisation tools, out application applies role-based
access control. This feature is of utter importance, especially if
we take into consideration that building data, or project data
related to buildings (consumptions, weather data, etc.) are
sensitive and shall be protected from being accessed by
unauthorized parts.

A. Functionality

The first step for the usage of the Visualisation Engine is the
Sign In process. For security reasons, the visualisations need to
be only available for signed-in users, as the data displayed could
be sensitive and/or confidential. To sign in to the platform, the
users are automatically navigated to the Sign In page (Fig. 3),
where they are prompted to fill in the “Username” and
“Password” fields. For the implementation of the Sign In
functionality, a request is sent to the back-end application, which
contains the provided username and password. If the credentials
are correct, the back-end’s response contains an access token.
This access token is stored in the front-end application and
through the introspection functionality provided by the back-end
application, the access rights of this particular user (e.g., which
datasets they can access) are decided.

The sidebar menu consists of three main items. The first one,
namely Visualisations, consists of a number of subitems, which
are matched with the different charts that are available (pie chart,
bar chart, gauge chart, radar chart and line chart). The second
one is named “SQL query tables” and the third one is named
“Maps”. Additionally, a User Profile page has been
implemented. This page contains the basic information of the
user, as well as the user’s latest queries and files uploaded. All
the aforementioned pages will be thoroughly described in the
following section.

Fig. 3: Sign In page.

B. Pages

1) Visualizations
In order to create a visualisation, the uses must fill in a form

which contains various fields, including the table of which the
data need to be visualised and the aggregation metric that will
be applied (SUM, AVG (average), COUNT, MIN (minimum),
MAX (maximum)). Upon the selection of the table, a request is
sent to the back-end, in order to retrieve the columns of this
specific table. The corresponding form fields are automatically
updated, and the users must choose the column of the table that
they need to visualise. A “LIMIT” field is also provided, in case
that the number of rows has to be limited and, finally, a
checkbox with the label “3D chart” is provided. Based on the
value of this checkbox, the visualisations are displayed in
diverse ways. Fig. 4, Fig. 5, Fig. 6, Fig. 7, and Fig. 8 illustrate
one instance of each chart available.

Fig. 4: Pie Chart example.

Fig. 5: Bar Chart example.

Fig. 6: Gauge Chart example.

Fig. 7: Radar Chart example.

Fig. 8: Line Chart example.

Apart from charts, the users can also visualise data into
tables. This capability is offered through the “SQL Query
tables” page of the Visualisation Engine. In this page, the user
can either submit a plain SQL Query (Fig. 9), or fill a form (Fig.
10) which includes all the needed fields and following sent to
the back-end application in order to retrieve the needed data. The
retrieved data are then displayed into responsive and adjustable
tables. A screenshot of an example query is provided in Fig. 11.

Fig. 9: Text field for submitting common SQL commands.

Fig. 10: Form for submitting queries

Fig. 11: Table containing retrieved data.

2) Maps
In case the data include coordinate information, they can be

visualised into maps (Error! Reference source not found.).
These maps are created by using the Leaflet.js library and can

be zoomed-in and out. Each entity is represented as a pin on the
map and upon clicking on each pin, the requested information is
displayed. Fig. 12 illustrates an example of a map visualization.

3) User Profile Page
The User Profile Page contains several basic information

about the user, provided during the user’s registration to the
platform. It also contains a list of the roles assigned to the
particular user, as well as a list of the last queries that she / he
has submitted to the pages that provide visualisations.
Additionally, this page provides the user with the capability of
uploading files to the Visualisation Engine via Comma
Delimited Value (CSV) files. To upload a file, the user must
specify the columns and the type of value (INTEGER, FLOAT,
DOUBLE, DATE, STRING, BOOLEAN, BINARY) they
contain, as well as to specify a name for the specific file. Fig. 13
depicts the above-described functionality and the created
component for this procedure. After uploading the file, the back-
end processes, stores, and relates it with the user in question.
Following, the file is available for downloading and it is also
available for all the potential visualisations. A snapshot of the
User Profile page, in a testing environment, is presented in Fig.
14.

Fig. 12: Map visualisation example

Fig. 13: Upload file form.

Fig. 14: User Profile Page.

IV. USE CASE SCENARIO DEMONSTRATION

For clarity reasons and in order to thoroughly demonstrate
the proposed Visualisation Engine’s added value, this section
describes how a potential user, related to a specific large-scale
pilot of the project, could take advantage of the offered
functionalities.As described, not all the datasets are available to
every user. On the contrary, the users, based on the role(s) they
are assigned to, can have access and, thus, visualize / process the
data of specific datasets.

In the context of MATRYCS project, a handful of pilots are
involved providing various data. One of them, provides data
related to actual performance of investments in terms of energy
savings. Assuming that a user needs to visualise these data and
extract conclusions about the achieved CO2 reductions that were
achieved due to the realisation of the aforementioned
investments. Using the “SQL query tables” page, the user may,
for instance, group the sum of the CO2 reduction, absolute
numbers, grouped by the types of buildings the investments
were made to (Fig. 15).

Fig. 15: Table including CO2 Emission Reduction for each building type

investments were made to in the context of a specific large-scale pilot.

Fig. 16: Pie Chart including CO2 Emission Reduction for each building type

investments made to in the context of a specific large-scale pilot.

Following, the user can also turn the same query into a Pie
Chart (Fig. 16), in order to see the percentage distribution among
the same investments.

Additionally, the user can export useful insights by co-
relating CO2 Emission reductions with energy consumption
reductions, a metric that is also offered by this specific pilot.
This co-relation can either by presented in the form of tables
(Error! Reference source not found.) or via the charts that are
offered.

 In this way, a wide range of insights can be exported for each
and every one of the available datasets. The users can visualise
the required data in plenty of ways and, thus, extract useful
information from them, as well as display them in a more
readable way. On top of this, the project’s data are secured, via
the full integration that has been implemented with the Security
mechanism described in the previous sections. This is one of the
most important offerings of the proposed Visualisation Engine
since it ensures data privacy and requires no further
configurations before setting up for usage.

V. CONCLUSIONS AND FUTURE WORK

This paper introduced a Visualisation Engine. The proposed
application offers a wide variety of visualisation capabilities to
the user, and it also implements role-based access control over
the stored data, by being fully integrated with the security
framework also developed in the context of the same project.
With this work, we envision to assist towards the direction of
creating useful charts and visualisations that will be able to lead
to useful and meaningful conclusions and insights of buildings’
functional needs and energy consumption metrics. The followed
development approach was modular and microservice-oriented,
meaning that all the developed components, including the
Visualisation Engine, can be easily adjusted to visualise any
properly formatted data.

As future work, we have identified several features that can
be added to the above-described application. The provided
functionalities will be extended with even more aggregate
methods available and further query capabilities (e.g., JOIN
queries) in the next versions of our application. Further
visualisation capabilities will be added, meaning more chart
options. Additionally, we are planning to also offer JOIN query
capabilities, to provide even more detailed and complex data
exploration capabilities than can lead to more in-depth insights.

ACKNOWLEDGMENT

This work has been funded from the European Union’s

Horizon 2020 research and innovation program under the

MATRYCS project ‘Modular Big Data Applications for

Holistic Energy Services in Buildings’, grant agreement No
101000158.

REFERENCES

[1] V. Marinakis, “Big Data for Energy Management and Energy-Efficient

Buildings,” Energies, vol. 13, no. 7, Art. no. 7, Jan. 2020, doi:

10.3390/en13071555.

[2] G. Hernández-Moral et al., “Big Data Value Chain: Multiple

Perspectives for the Built Environment,” Energies, vol. 14, no. 15, Art.

no. 15, Jan. 2021, doi: 10.3390/en14154624.

[3] H. Doukas and A. Nikas, “Decision support models in climate policy,”

Eur. J. Oper. Res., vol. 280, no. 1, pp. 1–24, Jan. 2020, doi:

10.1016/j.ejor.2019.01.017.

[4] C. A. Horowitz, “Paris Agreement,” Int. Leg. Mater., vol. 55, no. 4, pp.

740–755, Aug. 2016, doi: 10.1017/S0020782900004253.

[5] E. Costanza, S. D. Ramchurn, and N. R. Jennings, “Understanding

domestic energy consumption through interactive visualisation: a field

study,” in Proceedings of the 2012 ACM Conference on Ubiquitous

Computing, New York, NY, USA, Jun. 2012, pp. 216–225. doi:

10.1145/2370216.2370251.

[6] K. Vikhorev, R. Greenough, and N. Brown, “An advanced energy

management framework to promote energy awareness,” J. Clean. Prod.,

vol. 43, pp. 103–112, Mar. 2013, doi: 10.1016/j.jclepro.2012.12.012.

[7] E. Sarmas, E. Spiliotis, V. Marinakis, T. Koutselis, and H. Doukas, “A

meta-learning classification model for supporting decisions on energy

efficiency investments,” Energy Build., vol. 258, p. 111836, Mar. 2022,

doi: 10.1016/j.enbuild.2022.111836.

[8] T. A. Mohammed, A. Ghareeb, H. Al-bayaty, and S. Aljawarneh, “Big

data challenges and achievements: applications on smart cities and

energy sector,” in Proceedings of the Second International Conference

on Data Science, E-Learning and Information Systems - DATA ’19,

Dubai, United Arab Emirates, 2019, pp. 1–5. doi:

10.1145/3368691.3368717.

[9] N. Koseleva and G. Ropaite, “Big Data in Building Energy Efficiency:

Understanding of Big Data and Main Challenges,” Procedia Eng., vol.

172, pp. 544–549, 2017, doi: 10.1016/j.proeng.2017.02.064.

[10] C. Burnay, F. Dargam, and P. Zarate, “Special issue: Data visualization

for decision-making: an important issue,” Oper. Res., vol. 19, no. 4, pp.

853–855, Dec. 2019, doi: 10.1007/s12351-019-00530-z.

[11] D. Lee, G. Cha, and S. Park, “A study on data visualization of

embedded sensors for building energy monitoring using BIM,” Int. J.

Precis. Eng. Manuf., vol. 17, no. 6, pp. 807–814, Jun. 2016, doi:

10.1007/s12541-016-0099-4.

[12] D. Keim, G. Andrienko, J.-D. Fekete, C. Görg, J. Kohlhammer, and G.

Melançon, “Visual Analytics: Definition, Process, and Challenges,” in

Information Visualization: Human-Centered Issues and Perspectives, A.

Kerren, J. T. Stasko, J.-D. Fekete, and C. North, Eds. Berlin,

Heidelberg: Springer, 2008, pp. 154–175. doi: 10.1007/978-3-540-

70956-5_7.

[13] S. Grainger, F. Mao, and W. Buytaert, “Environmental data

visualisation for non-scientific contexts: Literature review and design

framework,” Environ. Model. Softw., vol. 85, pp. 299–318, Nov. 2016,

doi: 10.1016/j.envsoft.2016.09.004.

[14] S. Batt, T. Grealis, O. Harmon, and P. Tomolonis, “Learning Tableau:

A data visualization tool,” J. Econ. Educ., vol. 51, no. 3–4, pp. 317–

328, Sep. 2020, doi: 10.1080/00220485.2020.1804503.

[15] J. D. Hunter, “Matplotlib: A 2D Graphics Environment,” Comput. Sci.

Eng., vol. 9, no. 03, pp. 90–95, May 2007, doi: 10.1109/MCSE.2007.55.

[16] P. Kapsalis, G. Kormpakis, K. Alexakis, and D. Askounis, “Leveraging

Graph Analytics for Energy Efficiency Certificates,” Energies, vol. 15,

no. 4, Art. no. 4, Jan. 2022, doi: 10.3390/en15041500.

[17] M. Pau, P. Kapsalis, Z. Pan, G. Korbakis, D. Pellegrino, and A. Monti,

“MATRYCS—A Big Data Architecture for Advanced Services in the

Building Domain,” Energies, vol. 15, no. 7, Art. no. 7, Jan. 2022, doi:

10.3390/en15072568.

[18] E. Maler, M. Machulak, and J. Richer, “User-Managed Access (UMA)

2.0 Grant for OAuth 2.0 Authorization,” Jan. 07, 2018.

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html

(accessed Apr. 09, 2022).

